Foreword from David Leftley (CTO)

Light and its compositions has fascinated scientists for more than 2,000 years – from Aristotle to Newton, Young, Hertz and Maxwell But it was ultimately Einstein, with his photoelectric effect theory, who postulated that light is made up of particles called photons. Einstein is famous for his research on the theory of relativity yet it was his work on theoretically revealing the photoelectric effect based on the light quantum hypothesis that won him the Nobel Prize in physics in 1921.

The photon has many mysterious physical properties such as possessing the dual properties of a wave and a particle. And it was Einstein himself who described things such as entanglement as “spooky”.  Learning more about these properties is allowing us to use light more effectively than ever before and applying this knowledge allows us to make significant advances in many new areas of science and technology. To date, photonics has been predominantly applied to communications with the introduction of optical fibre transforming networks as early as the 1960’s. But now we are seeing photonics taking hold in other areas such as computing, AI, sensing and quantum communications.

In the following brief, David Pollington explores the challenges and exposes some of the early stage innovation opportunities that exist in Photonics and these application areas. 

The introduction of PICs

Until now, photonics has focused predominantly on enabling high-speed communications, a lucrative market that now tops $10bn just for optical transceivers. But photonics also has application in many other areas ranging from solid-state LiDAR to inertial navigation sensors, spectrometers, refractive index biosensors, quantum computers, and accelerating AI.

This article discusses the merits of using photons rather than electrons with an especial focus on photonic integrated circuits (PICs), the wide range of integrated photonics use cases, the current industry landscape of PICs, and the opportunities for startups to innovate in this space.

A PIC is a microchip containing photonic components which form a circuit that processes photons as opposed to electrons to perform a function.

In comparison with digital microelectronic circuits in which the majority of functions are performed using transistors, with photonics it’s a little more complex; there’s no single dominant device but rather a variety of components which can be either passive (e.g. couplers, switches, modulators, multiplexers) or active (e.g., amplifiers, detectors, lasers) and then interconnected via waveguides to form a circuit.

Figure 1: Electronic and photonic circuit building blocks [AIP Publishing]

Similar to digital microelectronics, photonic circuits can be fabricated on silicon, enabling high-density PICs to be made in existing CMOS foundries and co-integrated with transistor-based electronics.  Silicon on insulator (SOI) has been the most widely used process within silicon photonics (SiPh) but is likely to be replaced in certain applications by Silicon Nitride (SiN) due to its wider spectral range, low propagation loss and higher power handling (particularly useful for detectors, spectrometers, biosensors, and quantum computers).

However, neither of the silicon-based processes can generate light on their own nor allow for the integration of active components, hence a separate process, Indium Phosphide (InP), is commonly used for fabricating high-performance amplifiers, lasers, and detectors. 

Figure 2: Number of photonic components/PIC [Chao Xiang, University of California]

The design challenges with PICs

Photonic circuit design is complex; individual components need to be tailored to the target application requirements (wavelengths; linearities; power levels), process types (SiPh, InP, SiN) and fabs (characterisation), and hence often need to be designed from scratch, requiring large design teams and/or a dependency on independent design houses.

Once the photonic circuit has been designed and verified there are still hurdles in packaging, laser integration, testing and additional processing steps – whilst packaging, assembly, and testing are only a small part of the cost for digital microelectronics (10%), the reverse is true for photonics, and can be as much as 80% of the total cost for InP photonic devices.

Fabs are starting to address this issue by providing process design kits (PDKs) that designers can use to design, simulate, and verify designs before handing them back to the foundry for fabrication.  These PDKs include a base set of photonic building blocks (BBs) to bootstrap the design process but are often limited to particular wavelengths and applications (e.g., telecoms).

A market opportunity therefore exists for design houses and other 3rd parties to license out BBs and even entire circuits that fit the broader set of application requirements. LioniX, for example, offers a range of SiN PIC modules, whilst PhotonDelta, a growth accelerator for the Dutch integrated photonics industry, offers a number of design libraries.

EDA tools can then be used for combining these BBs into photonic circuits whilst facilitating seamless integration of electronic and photonic components in IC designs where needed.

However, as mentioned earlier, these designs still then need to be optimised/characterised for the target process/fab, as imperfections and fluctuations of even a few nanometres can cause scattering or reflections and affect performance. In many respects, the photonic circuit design process is more akin to RF and PCB design than digital microelectronics – mostly analogue, and needing careful selection and qualification of components.

A number of parties are exploring ways of addressing some of these issues and accelerating photonic design. Researchers in Canada, for instance, are using machine learning to predict the precise structure of a photonic component once it’s fabricated to a particular process/fab thereby enabling accurate simulation and optimisation to circumvent the ‘trial and error’ nature of photonic design.  Similarly, a startup in the UK, Wave Photonics, has pioneered computational techniques to auto-adapt functional building blocks for different wavelengths, fabs and performance design trade-offs.

Nevertheless, the fabrication process still involves a degree of trial and error today, and it may well be 3-5yrs and require a large number of wafer runs and assemblies before the process is perfected sufficiently to deliver the predictable outcomes required to scale up to larger circuits and high volumes.

The use of photonics in communications & networking

Digital microelectronics has become pervasive, but with the demand for ever-faster compute and higher-bandwidth networking, the interaction of electrons with other particles in the copper wires at these speeds is resulting in higher energy consumption, more heat, and restrictions to performance.  Photons don’t suffer from any of these constraints being virtually frictionless and able to travel faster, support higher bandwidths, and be more energy efficient, hence present an intriguing alternative.

Whilst optical links have been introduced within data centres to form high-speed clusters, the wiring within the racks is typically copper, and as processing demands continue to rise, this is creating a bottleneck and issues around both energy consumption and cooling.

The answer is likely to be through Co-Packaged Optics (CPO) in which the switch ASICs and optical engines are integrated on a single packaged substrate to move the optical connection as close as possible to the switching chip.  Doing so enables higher density integration and improves cost effectiveness and energy efficiency with savings of up to 30% of the total system power. Ayar Labs, for example, integrate the optical/electrical components of a transceiver bar the laser inside an optical I/O chiplet.

Ayar Labs optical I/O chiplet

Figure 3: Ayar Labs optical I/O chiplet [Ayar Labs]

In a similar vein, Nvidia and TSMC are interconnecting multiple AI GPUs via a chip-on-wafer-on-substrate (CoWoS) 2.5D package, and Lightmatter’s Passage enables chiplets to be interconnected via nanophotonic waveguides.

The demand for low-power optical transceivers within data centres, and in particular for Co-Packaged Optics (CPO), will be a key driver in the growth of the silicon photonics market over the next 3-5yrs ($3-4 billion by 2025).

Accelerating AI

With AI compute requirements doubling every 3.4mths (c.f. Moore’s Law which had a 2-year doubling period) [OpenAI] fuelled most recently by the race to generative AI, there is a growing need to develop novel computing systems capable of fast and energy-efficient computation.

Figure 4: Computational requirements for training transformer models [Nvidia]

Silicon photonics may provide an answer, utilising the unique properties of light to solve complex mathematical problems and meet today’s AI compute demands but with energy consumption as low as one photon per operation and performed at the speed of light hence orders of magnitude faster and more energy efficient than digital computation (although getting data efficiently in/out the photonic chip remains a challenge).

To give an example, detecting edges in an image is of great use in the world of computer vision (e.g., for feature extraction or pattern detection) but requires a lot of compute to perform the CNN multiplication operations.

Figure 5: Example of image edge detection [Brighton Nkomo]

Fourier Transforms (FFT) represent a faster method, enabling the image data to be converted from the spatial domain to the frequency domain where edges will be represented by high frequencies which can be captured via a high pass filter.  An inverse FFT then transforms the data back into an image showing just the edges of objects in the original image.

The downside is that FFTs themselves are computationally intensive, so this approach presents only a marginal improvement when using digital computation.

Light though has unique properties, and its interference behaviour can be used to perform FFT operations in a massively parallel way that is not only incredibly fast, but also tremendously energy efficient compared to digital computation.

Figure 6: Solving a complex mathematic equation with light [Ella Maru studio]

In practise though, there remain a few obstacles. 

Optical components can’t be packed nearly as tightly as transistors hence chip size can be an issue, although membrane-based nanophotonic technologies should in future enable tens of thousands of components per chip, and new approaches such as the use of very thin nanostructured surfaces combined with semi-transparent mirrors are being explored for performing the matrix multiplications in AI/ML inference.

Another issue is around accuracy.  Today’s implementations are mainly targeted at performing inference on ML models trained using digital systems.  Physical imperfections in the PIC fabrication, and quantisation noise introduced through the optical/electrical converters for getting data in and out of the photonic chip, can result in a ‘reality gap’ between the trained model and inference output that adversely affects accuracy and energy efficiency.

These challenges though present huge opportunity for innovation, whether that be through improving PIC density, optimising the optical/electrical interface to improve precision, or harnessing the unique properties of light to deliver a step-change in AI inference performance and energy efficiency.

Salience Labs for instance are pioneering a novel ‘on-memory compute’ architecture and using different wavelengths of light to facilitate highly parallelised operation and boost performance, whilst Lumai are exploring the application of photonics for more efficient ML model training.

With the AI chip market projected to be worth a colossal $309bn by 2030 [Verified Market Research], the application of integrated photonics to AI acceleration is likely to attract a lot more investor interest and innovation going forward.

Integrated photonics in sensors

At a component level, integrated photonics is being employed in inertial sensors to achieve ultra-precise positioning/indoor navigation [Zero Point Motion], and separately is enabling laser diodes to be integrated with micro-optics and electrical interfaces on a millimetre-sized chip for use in AR/VR glasses as demonstrated in this YouTube video.

Figure 7: Fully integrated RGB laser light engine for retinal projection in AR [LionIX]

Integrated photonics also opens up the prospect of lab-on-a-chip (LOC) biosensors through a combination of miniaturisation, extreme sensitivity, supporting multiple simultaneous tests, and enabling mass production at low cost.  The Point of Care (PoC) market is expected to double in the next few years to $10.1B by 2025 [Yole Development].

Figure 8: Diagnostics platform providing Point of Care (POC) tests [SurfiX Diagnostics]

And finally, the intrinsic benefits in photonics for computing FFTs can also be used to provide the massive vector transforms needed for fast and efficient fully homomorphic encryption (FHE) to enable secure processing in the cloud or by 3rd parties without the data ever being in the clear.

Can integrated photonics reach scale?

The opportunity is clear. But for integrated photonics to thrive and reach million-scale volumes across multiple sectors there will need to be a more comprehensive set of pre-validated design libraries and tools that decouple design from the underlying fabrication and packaging technology to enable a fabless model that attracts new entrants and innovation.

The opportunity for startups is therefore twofold 1) innovating within the design process & toolchain to reduce lead times and improve performance, 2) applying integrated photonics within new products & services in networking, AI acceleration, ultra-sensitive sensors, and healthcare.

Europe has a heritage in photonics, so it’s perhaps not surprising that European research organisations, spinouts and startups are leading the industry.

Figure 9: Value chain companies by geography [PhotonDelta: SiN; InP]

In the photonics design, packaging and testing space, example European companies include Alcyon Photonics, Wave Photonics, Bright Photonics, VLC Photonics, Photon Design, FiconTEC, PhotonDelta and LioniX.

Companies developing photonic chips to accelerate AI include Optalysys, Salience Labs and Lumai whilst those using photonics to produce ultra-sensitive sensors include Zero Point Motion, Miraex and PhotonFirst; SMART Photonics and EFFECT Photonics are addressing the telecoms/networking space, and organisations such as PhotonDelta and JePPIX are helping to coordinate the growth of integrated photonics across Europe.

Integrated photonics faces many challenges, but there is increasing evidence that the technology is set to follow the same trajectory as microelectronics over the coming years. The potential upside is therefore huge, both in terms of market value but also in the opportunity this presents for innovative startups.

If you’re a startup in this space, we’d love to hear from you.

An introduction from our CTO

Whilst security is undoubtedly important, fundamentally it’s a business case based on the time-value depreciation of the asset being protected, which in general leads to a design principle of “it’s good enough” and/or “it will only be broken in a given timeframe”.

At the other extreme, history has given us many examples where reliance on theoretical certainty fails due to unknowns. One such example being the Titanic which was considered by its naval architects as unsinkable. The unknown being the iceberg!

It is a simple fact that weaker randomness leads to weaker encryption, and with the inexorable rise of compute power due to Moore’s law, the barriers to breaking encryption are eroding. And now with the advent of the quantum-era, cyber-crime is about to enter an age in which encryption when done less than perfectly (i.e. lacking true randomness) will no longer be ‘good enough’ and become ever more vulnerable to attack.

In the following, Bloc’s Head of Research David Pollington takes a deeper dive into the landscape of secure communications and how it will need to evolve to combat the threat of the quantum-era. Bloc’s research findings inform decisions on investment opportunities.

Setting the scene

Much has been written on quantum computing’s threat to encryption algorithms used to secure the Internet, and the robustness of public-key cryptography schemes such as RSA and ECDH that are used extensively in internet security protocols such as TLS.

These schemes perform two essential functions: securely exchanging keys for encrypting internet session data, and authenticating the communicating partners to protect the session against Man-in-the-Middle (MITM) attacks.

The security of these approaches relies on either the difficulty of factoring integers (RSA) or calculating discrete logarithms (ECDH). Whilst safe against the ‘classical’ computing capabilities available today, both will succumb to Shor’s algorithm on a sufficiently large quantum computer.  In fact, a team of Chinese scientists have already demonstrated an ability to factor integers of 48bits with just 10 qubits using Schnorr’s algorithm in combination with a quantum approximate optimization to speed-up factorisation – projecting forwards, they’ve estimated that 372 qubits may be sufficient to crack today’s RSA-2048 encryption, well within reach over the next few years.

The race is on therefore to find a replacement to the incumbent RSA and ECDH algorithms… and there are two schools of thought: 1) Symmetric encryption + Quantum Key Distribution (QKD), or 2) Post Quantum Cryptography (PQC).

Quantum Key Distribution (QKD)

In contrast to the threat to current public-key algorithms, most symmetric cryptographic algorithms (e.g., AES) and hash functions (e.g., SHA-2) are considered to be secure against attacks by quantum computers.

Whilst Grover’s algorithm running on a quantum computer can speed up attacks against symmetric ciphers (reducing the security robustness by a half), an AES block-cipher using 256-bit keys is currently considered by the UK’s security agency NCSC to be safe from quantum attack, provided that a secure mechanism is in place for sharing the keys between the communicating parties – Quantum Key Distribution (QKD) is one such mechanism.

Rather than relying on the security of underlying mathematical problems, QKD is based on the properties of quantum mechanics to mitigate tampering of the keys in transit. QKD uses a stream of single photons to send each quantum state and communicate each bit of the key.

Figure 1 QKD BB84 protocol

However, there are a number of implementation considerations that affect its suitability:

Integration complexity & cost

Distance constraints


DoS attack

Post-Quantum Cryptography (PQC)

Rather than replacing existing public key infrastructure, an alternative is to develop more resilient cryptographic algorithms.

With that in mind, NIST have been running a collaborative activity with input from academia and the private sector (e.g., IBM, ARM, NXP, Infineon) to develop and standardise new algorithms deemed to be quantum-safe.

A number of mathematical approaches have been explored with a large variation in performance. Structured lattice-based cryptography algorithms have emerged as prime candidates for standardisation due to a good balance between security, key sizes, and computational efficiency. Importantly, it has been shown that lattice-based algorithms can be implemented on low-power IoT edge devices (e.g., using Cortex M4) whilst maintaining viable battery runtimes.

Four algorithms have been short-listed by NIST: CRYSTALS-Kyber for key establishment, CRYSTALS-Dilithium for digital signatures, and then two additional digital signature algorithms as fallback (FALCON, and SPHINCS+). SPHINCS+ is a hash-based backup in case serious vulnerabilities are found in the lattice-based approach.

Figure 2 NIST PQC candidates

NIST aims to have the PQC algorithms fully standardised by 2024, but have released technical details in the meantime so that security vendors can start working towards developing end-end solutions as well as stress-testing the candidates for any vulnerabilities. A number of companies (e.g., ResQuant, PQShield and those mentioned earlier) have already started developing hardware implementations of the two primary algorithms.

Commercial landscape

QKD has made slow progress in achieving commercial adoption, partly because of the various implementation concerns outlined above. China has been the most active, the QUESS project in 2016 creating an international QKD satellite channel between China and Vienna, and in 2017 the completion of a 2000km fibre link between Beijing and Shanghai. The original goal of commercialising a European/Asian quantum-encrypted network by 2020 hasn’t materialised, although the European Space Agency is now aiming to launch a quantum satellite in 2024 that will spend three years in orbit testing secure communications technologies.

Figure 3 Quantum Experiments at Space Scale (QUESS)

BT has recently teamed up with EY (and BT’s long term QKD tech partner Toshiba) on a two year trial interconnecting two of EY’s offices in London, and Toshiba themselves have been pushing QKD in the US through a trial with JP Morgan.

Other vendors in this space include ID Quantique (tech provider for many early QKD pilots), UK-based KETS, MagiQ, Qubitekk, Quintessance Labs and QuantumCtek (commercialising QKD in China). An outlier is Arqit; a QKD supporter and strong advocate for symmetric encryption that addresses many of the QKD implementation concerns through its own quantum-safe network and has partnered with Virgin Orbit to launch five QKD satellites, beginning in 2023.

Given the issues identified with QKD, both the UK (NCSC) and US (NSA) security agencies have so far discounted QKD for use in government and defence applications, and instead are recommending post-quantum cryptography (PQC) as the more cost effective and easily maintained solution.

There may still be use cases (e.g., in defence, financial services etc.) where the parties are in fixed locations, secrecy needs to be guaranteed, and costs are not the primary concern. But for the mass market where public-key solutions are already in widespread use, the best approach is likely to be adoption of post-quantum algorithms within the existing public-key frameworks once the algorithms become standardised and commercially available.

Introducing the new cryptographic algorithms though will have far reaching consequences with updates needed to protocols, schemes, and infrastructure; and according to a recent World Economic Forum report, more than 20 billion digital devices will need to be upgraded or replaced.

Widespread adoption of the new quantum-safe algorithms may take 10-15 years, but with the US, UK, French and German security agencies driving the use of post-quantum cryptography, it’s likely to become defacto for high security use cases in government and defence much sooner.

Organisations responsible for critical infrastructure are also likely to move more quickly – in the telco space, the GSMA, in collaboration with IBM and Vodafone, have recently launched the GSMA Post-Quantum Telco Network Taskforce.  And Cloudflare has also stepped up, launching post-quantum cryptography support for all websites and APIs served through its Content Delivery Network (19+% of all websites worldwide according to W3Techs).

Importance of randomness

Irrespective of which encryption approach is adopted, their efficacy is ultimately dependent on the strength of the cryptographic key used to encrypt the data.  Any weaknesses in the random number generators used to generate the keys can have catastrophic results, as was evidenced by the ROCA vulnerability in an RSA key generation library provided by Infineon back in 2017 that resulted in 750,000 Estonian national ID cards being compromised.

Encryption systems often rely upon Pseudo Random Number Generators (PRNG) that generate random numbers using mathematical algorithms, but such an approach is deterministic and reapplication of the seed generates the same random number.

True Random Number Generators (TRNGs) utilise a physical process such as thermal electrical noise that in theory is stochastic, but in reality is somewhat deterministic as it relies on post-processing algorithms to provide randomness and can be influenced by biases within the physical device.  Furthermore, by being based on chaotic and complex physical systems, TRNGs are hard to model and therefore it can be hard to know if they have been manipulated by an attacker to retain the “quality of the randomness” but from a deterministic source.Ultimately, the deterministic nature of PRNGs and TRNGs opens them up to quantum attack.

A further problem with TRNGs for secure comms is that they are limited to either delivering high entropy (randomness) or high throughput (key generation frequency) but struggle to do both.  In practise, as key requests ramp to serve ever-higher communication data rates, even the best TRNGs will reach a blocking rate at which the randomness is exhausted and keys can no longer be served.  This either leads to downtime within the comms system, or the TRNG defaults to generating keys of 0 rendering the system highly insecure; either eventuality results in the system becoming highly susceptible to denial of service attacks.  

Quantum Random Number Generators (QRNGs) are a new breed of RNGs that leverage quantum effects to generate random numbers.  Not only does this achieve full entropy (i.e., truly random bit sequences) but importantly can also deliver this level of entropy at a high throughput (random bits per second) hence ideal for high bandwidth secure comms.

Having said that, not all QRNGs are created equal – in some designs, the level of randomness can be dependent on the physical construction of the device and/or the classical circuitry used for processing the output, either of which can result in the QRNG becoming deterministic and vulnerable to quantum attack in a similar fashion to the PRNG and TRNG.  And just as with TRNGs, some QRNGs can run out of entropy at high data rates leading to system failure or generation of weak keys.

Careful design and robustness in implementation is therefore vital – Crypta Labs have been pioneering in quantum tech since 2014 and through their research have designed a QRNG that can deliver hundreds of megabits per second of full entropy whilst avoiding these implementation pitfalls.


Whilst time estimates vary, it’s considered inevitable that quantum computers will eventually reach sufficient maturity to beat today’s public-key algorithms – prosaically dubbed Y2Q. The Cloud Security Alliance (CSA) have started a countdown to April 14 2030 as the date by which they believe Y2Q will happen.

QKD was the industry’s initial reaction to counter this threat, but whilst meeting the security need at a theoretical level, has arguably failed to address implementation concerns in a way which is cost effective, scalable and secure for the mass market, at least to the satisfaction of NCSC and NSA.

Proponents of QKD believe key agreement and authentication mechanisms within public-key schemes can never be fully quantum-safe, and to a degree they have a point given the recent undermining of Rainbow, one of the short-listed PQC candidates. But QKD itself is only a partial solution.

The collaborative project led by NIST is therefore the most likely winner in this race, and especially given its backing by both the NSA and NCSC. Post-quantum cryptography (PQC) appears to be inherently cheaper, easier to implement, and deployable on edge devices, and can be further strengthened through the use of advanced QRNGs. Deviating away from the current public-key approach seems unnecessary compared to swapping out the current algorithms for the new PQC alternatives.

Looking to the future

Setting aside the quantum threat to today’s encryption algorithms, an area ripe for innovation is in true quantum communications, or quantum teleportation, in which information is encoded and transferred via the quantum states of matter or light.

It’s still early days, but physicists at QuTech in the Netherlands have already demonstrated teleportation between three remote, optically connected nodes in a quantum network using solid-state spin qubits.

Figure 4 Quantum teleportation experiment [QuTech]

Longer term, the goal is to create a ‘quantum internet’ – a network of entangled quantum computers connected with ultra-secure quantum communication guaranteed by the fundamental laws of physics. 

When will this become a reality?  Well, as with all things quantum, the answer is typically ‘sometime in the next decade or so’… let’s see.

‘Investors seek to profit from groundbreaking ‘generative AI’ start-ups. OpenAI’s ChatGPT is part of a rise in sophisticated computer programs that have driven a surge of venture capital interest’

David Leftley was featured in the Financial Times commenting on the rise of generative AI and how it could impact the future of technology as we know it. He specifically commented on the impact of AI on carbon emissions: “We are in a world where companies are chasing net zero [carbon emissions], and the luxury of having chatbots we can talk to through AI is burning a hole through the earth in a data centre.”

The full article can be found here.

This article was first published on Sifted’s website.

One of the problems that can curtail the growth of an early-stage deep tech startup, and specifically deep tech spinouts, is the length of time it takes to get a product to market — the extended period of research and development (R&D) needed can put off some VCs, who want quicker returns on their cash. 

Selling deep tech to customers and potential investors requires shifting focus from the initial scientific discovery to commercial viability, and so at the spinout stage — the process of commercialising research out of a university or similar institution —  the company requires entrepreneurial leadership. Without this, it can struggle to survive in a world where corporates and investors are flooded with innovation proposals.

That’s why when it comes to growing and scaling deep tech companies, founding teams need more than world class, deep science — they need entrepreneurial ambition.

Creating the right entrepreneurial environment

Creating the right environment begins with the way an institution approaches the spinout process. An example of how to do this can be seen at imec in Leuven. imec’s model ensures that well before spinning out, the core team is brought together and prepared for the challenges of commercialisation. It does this in several ways:

imec has a history of spinning out deep techs, and connecting emerging teams with entrepreneurs in its network. It’s spun out 137 companies since 1986, there is a network of investors engaged with its companies from the get-go and it has its own dedicated funds, Fidimec and imec.xpand.

It’s startups include PsiQuantum, which raised a $450m Series D in 2021, and Celestial AI, which raised a $56m Series A earlier this year. Both have relocated to the US to be closer to customers and talent. Radio frequency (RF) semiconductor company Pharrowtech is another spinout from the institution — it raised a €15m Series A in May this year. 

Most importantly, imec prepares the company (and the team) for multiple rounds of venture capital funding and puts an emphasis on preserving the right amount of equity for the team, while leaving room for investors to be incentivised for the long road ahead — the amount of equity imec takes at the time of spinning out varies, but this is typically aligned with a lead investor. 

A key ingredient for the spinout’s team is also an understanding of what success looks like. 

That means having entrepreneurs in and around the company at the spinout stage; speaking to investors or advisors with experience of company building; and having early interactions with “‘teacher customers”, who can enlighten you on their technology roadmap for the future. Potential clients explaining their needs and helping a startup to understand if their innovation meets those needs is invaluable.

What does a good deep tech team look like?

Entrepreneurial ambition and experience are fundamental to taking a technology to market. To improve the odds of achieving global scale, traits like emotional intelligence, extraversion, agreeableness and risk appetite should be present in the leadership team by Series A. 

It is worth noting, though, that such traits are unlikely to be present at inception. The founding team should, however, be aware enough to acknowledge and solve that through their hiring process. Members of the core research team need to remain involved in some capacity, being joined by industry experience and commercial talent. Sometimes this means separation from the institution in which the researchers have developed their technology, but not always.

In the case of semiconductor startup AccelerComm, it was spun out from the research of professor Rob Maunder of Southampton University, who is now the CTO and founder. He was joined by commercial leaders from ARM — who he hired after spinning out — providing a mixture of academic rigour and experience selling technology products across the world. 

AccelerComm is now approaching its Series B, after a £5.8m Series A in 2020, and Maunder still leads the company’s technology roadmap, while remaining a professor of electronics and computer science at the University of Southampton.

The team growth of AccelerComm is typical of what we’d expect from a deeptech spinout prior to Series A. We would expect a strong technical leader, someone leading on product development and engaging with customers to shape that product, and a CEO who has strong commercial skills but can also communicate well with investors.

Between inception and Series A, it’s vital the company has a product lead to understand customer needs, a CTO to build the technology and a CEO to own investor conversations and oversee sales. We’d expect a deep tech savvy CFO between Series A and B (possibly part-time before the A round), and I’d expect to see the following traits across the leadership team: risk taking, emotional intelligence, extraversion, agreeableness and, above all, transformational leadership (resilience, hope and optimism).

The majority of Bloc’s portfolio companies are deep tech spinouts, we’re always on the look out for more technology teams building the foundations of the future. Get in touch with us here.

The computing landscape is one of constant change and the move to cloud has arguably been the most transformative in recent years. Early concerns around security have given way to adoption – according to Cisco’s (2022), 82% of businesses now routinely use hybrid cloud. Ironically they found it’s often security concerns driving a hybrid-cloud approach by giving teams the ability to selectively place workloads in public clouds while keeping others on-prem, or using different regions to meet data residency requirements.

But with players such as AWS, GCP and Azure creating a stranglehold on the market, there is growing awareness and a movement away from becoming too dependent on any single Cloud Service Provider (CSP), instead taking a multi-cloud approach.

Decentralisation is currently du jour in many aspects of the online world, most notably in finance (DeFi), and is starting to gain attention in the compute space through companies such as StorJ, Akash and Threefold – in essence, a blockchain-enabled approach that harnesses distributed compute & storage and will no doubt contribute to the Web3 scaffolding that underpins the future metaverse.

But decentralisation is a radical approach, and only suited to particular applications. For most enterprises today, the focus is on successfully migrating their apps into the cloud, and employing services from multiple CSPs to mitigate the dangers of becoming overly reliant on any single provider. But as many are discovering, taking a multi-cloud approach brings its own complications.

This article looks at some of the considerations and challenges that enterprises face when migrating to multi-cloud, and the resources that are out there to help them.

Cloud exuberance is over

Much has been said regarding the benefits of migrating enterprise apps to the cloud: more agility and flexibility in gaining access to resources as and when needed; an ability to scale rapidly in accordance with business needs; enabling apps hosted on-prem to burst into the cloud to accelerate workload completion time and/or generate insights with more depth and accuracy.

But it’s not all plain sailing, the hype surrounding the cloud often hides a number of drawbacks that have resulted in many businesses failing to realise the benefits expected – a recent study by Accenture Research found that only one in three companies reported achieving their cloud aims.

“Lift and shift” of legacy apps to the cloud doesn’t always work due to issues around data gravity, sovereignty, compliance, cost, and interdependencies; or perhaps because the app itself has been optimised to a specific hardware and OS used on-prem that isn’t readily available at scale in the cloud. This problem is further exacerbated by enterprises needing to move to a multi-cloud architecture.

Many believe that utilising cloud resources has a lower total cost of ownership than operating on-prem. But this doesn’t always materialise and depends on the type of systems, apps and workloads that are being considered for migration.

In the case of high performance compute (HPC) which is increasing in importance for deep learning models, simulations and complex business decisioning, enterprises running these tasks on their own infrastructure commonly dimension for high utilisation (70-90%) whereas pricing in the cloud is often orientated towards SaaS-based apps where hardware utilisation is typically <20%.

For many enterprises therefore, embarking on a programme of modernisation often results in getting caught in the middle, struggling to reach their transformation goals amidst a complex dual operating environment with some systems migrated to the cloud whilst others by necessity stay on-prem.

Optimising workloads for the cloud

For those workloads that are migrated to the cloud, delivering on the cost & performance targets set by the enterprise will be dependent on real-time analysis of workload snapshots, careful selection of the most appropriate instance types, and optimisation of the workloads to the instances that are ultimately used.

Achieving this requires a comprehensive understanding of all the compute resources available across the CSPs (assuming a multi-cloud approach), being able to select the best resource type(s) and number of instances for a given workload and SLA requirements (resilience, time, budget). In addition, where spot/pre-emptible instances are leveraged, workload data needs to be replicated between the CSPs and locations hosting the spot instances to ensure availability.

Once the target instance types are known, workload performance can be tuned using tools such as Granulate that optimise OS-level scheduling and resource management to improve performance (up to 40-60%), especially for those instances leveraging new silicon.

Similarly, companies such as CloudFix help enterprises ensure their AWS instances are auto-updated with the latest patches to deliver a more compliant cloud that performs better and costs less by removing the effort of applying manual fixes.

Spot instances offered by the CSPs at a discount are ideal for loosely coupled HPC workloads, and often instrumental in helping enterprises hit their targets on performance and cost; but navigating the vast array of instance types and pricing models is far from trivial.

Moreover, prices often fluctuate based on demand, availability, and region. 451 Research’s Cloud Price Index (CPI) for instance recorded more than 1.2 million service changes in 2021 (SKUs added, SKUs removed, price increases and price decreases).

So whilst spot instances can help with budgetary targets and economic viability for HPC workloads, juggling instances to optimise cost and break-even point between reserved instances, on-demand, and spot/preemptible instances, versus retaining workloads on-prem, can become a real challenge for teams to manage.

Furthermore, with spot prices fluctuating frequently and resources being reclaimed with little notice by the CSP, teams need to closely monitor cloud usage, throttling down workloads when pricing rises above budget, migrating workloads when resources are reclaimed, and tearing down resources when they’re no longer needed. This can soon become an operational and administrative nightmare.

Cloud Management Platforms

Cloud Management Platforms (CMP) aim to address this with a set of tools for streamlining operations and enabling cloud resources to be utilised more effectively.

Whilst it’s true that CSPs provide such tools to aid their customers (such as AWS CloudWatch), they are proprietary in nature and vary in functionality, complicating the situation for any enterprise with multi-cloud deployments – in fact, Cisco found that a third of responding organisations highlighted operational complexity as a significant concern when adopting hybrid or multi-cloud models.

This is where CMPs come in, providing a “unified” experience and smoothing out the differences when working with multiple CSPs.

Such platforms provide an ability to:

CMPs achieve this by leveraging the disparate resources and tooling of the respective cloud providers to deliver a single homogenised set of resources for use by the enterprise’s apps.

Moreover, by unifying all elements of provisioning, scheduling and cost management within a single platform, they enable a more collaborative working relationship between teams within the organisation (FinOps). FinOps has demonstrated a reduction in cloud spend by 20-30% by empowering individual teams to manage their cloud usage whilst enabling better alignment with business metrics and strategic decision-making.

Introducing YellowDog

YellowDog is a leader in the CMP space with a focus on enterprises seeking a mix of public, private and on-prem resources for HPC workloads.

In short, the YellowDog platform combines intelligent orchestration, scheduling and dynamic policy-driven provisioning at scale across on-prem, hybrid and multi-cloud environments using agent technology. The platform has applicability ranging from containerised workloads through to supporting bare-metal servers without a hypervisor.

Compute resources are formulated into “on-demand” clusters and abstracted through the notion of workers (threads on instances). YellowDog’s Workload Manager is a cloud native scheduler that scales beyond existing technologies to millions of processor cores, working across all the CSPs, multi-region, multi-datacentre and multi-instance shapes.

It can utilise Spot type instances where others can’t, acting as both a native scheduler and meta-scheduler (invoking 3rd party technologies and creating specific workload environments such as Slurm, OpenMPI etc.) to work with both loosely coupled and tightly coupled workloads.

YellowDog’s workload manager matches workload demand with the supply of workers whilst ensuring compatibility (via YellowDog’s extensive Image Registry) and automatically reassigning workloads in case of instance removal – effectively it is “self-healing”, automatically provisioning and deprovisioning instances to match the workload queue(s).

The choice of which workers to choose is managed by the enterprise through a set of compute templates defining workload specific compute requirements, data compliance restrictions and enterprise policy on use of renewables etc. Compute templates can also be attribute-driven via live CSP information (price, performance, geographic region, reliability, carbon footprint etc.), and potentially in future with input from CPU and GPU vendors (e.g., to help optimise workloads to new silicon).

On completion, workload output can be captured in YellowDog’s Object Store Service for subsequent analysis and collection or as input to other workloads. By combining multiple storage providers (e.g. Azure Blob, Amazon S3, Google Cloud Storage) into one coherent data surface, YellowDog mitigate the issue of data gravity and ensure that data is in the right place for use within a workload.  YellowDog also supports the use of other file storage technologies (e.g. NFS, Lustre, BeeGFS) for data seeding and management.

In addition, the enterprise can define pipelines that are automatically triggered when a new file is uploaded into an object store that spin up instances and work on the new file, and then shut down when the work is completed.

As jobs are running, YellowDog enables different teams to monitor their individual workloads with real-time feedback on progress and status, as well as providing an aggregate view and ability to centrally manage quotas or allowances for different clouds, users, groups and so forth.

In summary

Multi-cloud is becoming the norm, with businesses typically using >2 different providers. In fact Cisco found that 58% of those surveyed use 2-3 CSPs for their workloads, with 31% using more than 4. Effective management of these multi-cloud environments will be paramount to ensuring future enterprise growth. Cloud Management Platforms, such as that offered by YellowDog, will play an important role in helping enterprises to maximise their use of hybrid / multi-cloud.

The focus of AI and ML innovation to-date has understandably been in those areas characterised by an abundance of labelled data with the goal of deriving insights, making recommendations and automating processes.

But not every potential application of AI produces enough labelled data to utilise such techniques – use cases such as spotting manufacturing defects on a production line is a good example where images of defects (for training purposes) are scarce and hence a different approach is needed.

Interest is now turning within academia and AI labs to the harder class of problems in which data is limited or more variable in nature, requiring a different approach. Techniques include: leveraging datasets in a similar domain (few-shot learning), auto-generating labels (semi-supervised learning), leveraging the underlying structure of data (self-supervised learning), or even synthesising data to simulate missing data (data augmentation).

Characterising limited-data problems

Deep learning using neural networks has become increasingly adept at performing tasks such as image classification and natural language processing (NLP), and seen widespread adoption across many industries and diverse sectors.

Machine Learning is a data driven approach, with deep learning models requiring thousands of labelled images to build predictive models that are more accurate and robust. And whilst it’s generally true that more data is better, it can take much more data to deliver relatively marginal improvements in performance.

Figure 1: Diminishing returns of two example AI algorithms [Source:]

Manually gathering and labelling data to train ML models is expensive and time consuming.  To address this, the commercial world has built large sets of labelled data, often through crowd-sourcing and through specialists like iMerit offering data labelling and annotation services.

But such data libraries and collection techniques are best suited to generalist image classification. For manufacturing, and in particular spotting defects on a production line, the 10,000+ images required per defect to achieve sufficient performance is unlikely to exist, the typical manufacturing defect rate being less than 1%. This is a good example of a ‘limited-data’ problem, and in such circumstances ML models tend to overfit (over optimise) to the sparse training data, hence struggle to generalise to new (unknown) images and end up delivering poor overall performance as a result.

So what can be done for limited-data use cases?

A number of different techniques can be used for addressing these limited-data problems depending on the circumstances, type of data and the amount of training examples available.

Few-shot learning is a set of techniques that can be used in situations where there are only a few example images (shots) in the training data for each class of image (e.g. dogs, cats). The fewer the examples, the greater the risk of the model overfitting (leading to poor performance) or adversely introducing bias into the model’s predictions. To address this issue, few-shot learning leverages a separate but related larger dataset to (pre)train the target model.

Three of the more popular approaches are meta-learning (training a meta-learner to extract generalisable knowledge), transfer learning (utilising shared knowledge between source and target domains) and metric learning (classifying an unseen sample based on its similarity to labelled samples).

Once a human has seen one or two pictures of a new animal species, they’re pretty good at recognising that animal species in other images – this is a good example of meta-learning.  When meta-learning is applied in the context of ML, the model consecutively learns how to solve lots of different tasks, and in doing so becomes better at learning how to handle new tasks; in essence, ‘learning how to learn’ similar to a human – illustrated below:

Figure 2: Meta-learning [Source:]

Transfer learning takes a different approach. When training ML models, part of the training effort involves learning how to extract features from the data; this feature extraction part of the neural network will be very similar for problems in similar domains, such as recognising different animal species, and hence can be used in instances where there is limited data.

Metric learning (or distance metric learning) determines similarity between images based on a distance metric and decides whether two images are sufficiently similar to be considered the same. Deep metric learning takes the approach one step further by using neural networks to automatically learn discriminative features from the images and compute the distance metric based on these features – very similar in fact to how a human learns to differentiate animal species.

Techniques such as few-shot learning can work well in situations where there is a larger labelled dataset (or pre-trained model) in a similar domain, but this won’t always be the case.

Semi-supervised learning can address this lack of sufficient data by leveraging the data that is labelled to predict labels for the rest hence creating a larger labelled dataset for use in training. But what if there isn’t any labelled data? In such circumstances, self-supervised learning is an emerging technique that sidesteps the lack of labelled data by obtaining supervisory signals from the data itself, such as the underlying structure in the data.

Figure 3 Predicting hidden parts of the input (in grey) from visible parts (in green) using self-supervised learning [source: metaAI]

An alternate approach is simply to fill the gap through data augmentation by simulating real-world events and synthesising data samples to create a sufficiently large dataset for training.  Such an approach has been used by Tesla to complement the billions of real-world images captured via its fleet of autonomous vehicles for training their AI algorithms, and by Amazon within their Amazon’s Go stores for determining which products each customer is taking from the shelves.

Figure 4: An Amazon Go store [Source:]

Whilst synthetic data might seem like a panacea for any limited-data problem, it’s too costly to simulate for every eventuality, and it’s impractical to predict anomalies or defects a system may face when put into operation.

Data augmentation has the potential to reinforce any biases that may be present in the limited amount of original labelled data, and/or causing overfitting of the model by creating too much similarity within the training samples such that the model struggles to generalise to the real-world.

Applying these techniques to computer vision

Mindtrace is utilising the unsupervised and few-shot learning techniques described previously to deliver a computer vision system that is especially adept in environments characterised by limited input data and where models need to adapt to changing real-life conditions.

Pre-trained models bringing knowledge from different domains create a base AI solution that is fine-tuned from limited (few-shot) or unlabelled data to deliver state-of-the-art performance for asset inspection and defect detection.

Figure 6: Mindtrace [Source:]

This approach enables efficient learning from limited data, drastically reducing the need for labelled data (by up to 90%) and the time / cost of model development (by a factor of 6x) whilst delivering high accuracy.

Furthermore, the approach is auto-adaptive, the models continuously learn and adapt after deployment without needing to be retrained, and are better able to react to changing circumstances in asset inspection or new cameras on a production line for detecting defects, for example.

The solution is also specifically designed for deployment at the edge by reducing the size of the model through pruning (optimal feature selection) and reducing the processing and memory overhead via quantisation (reducing the precision using lower bitwidths). 

Furthermore, through a process of swarm learning, insights and learnings can be shared between edge devices without having to share the data itself or process the data centrally, hence enabling all devices to feed off one-another to improve performance and quickly learn to perform new tasks (Bloc invested in Mindtrace in 2021).

In summary

The focus of AI and ML innovation to-date has understandably been in areas characterised by an abundance of labelled data to derive insights, make recommendations or automate processes.

Increasingly though, interest is turning to the harder class of problems with data that is limited and dynamic in nature such as the asset inspection examples discussed. Within Industry 4.0, limited-data ML techniques can be used by autonomous robots to learn a new movement or manipulation action in a similar way to a human with minimal training, or to auto-navigate around a new or changing environment without needing to be re-programmed.

Limited-data ML is now being trialled across cyber threat intelligence, visual security (people and things), scene processing within military applications, medical imaging (e.g., to detect rare pathologies) and smart retail applications.

Mindtrace has developed a framework that can deliver across a multitude of corporate needs.

autonomous mobile robots

Figure 7: Example Autonomous Mobile Robots from Panasonic [Source: Panasonic]

Industry 4.0 driving the need for 5G

Automation in Industry 4.0 sectors such as smart manufacturing, warehousing, mining and ports is driving increased demand for high performance connectivity. Wi-Fi is widely deployed today but is limited in terms of reliability and support for critical mobility use cases – 5G is much better placed to meet these needs.

In particular, 5G can meet requirements around high bandwidth and low latency, whilst also delivering resiliency through dedicated radio spectrum and has the flexibility to support full mobility ranging from indoor use to wide area outdoor coverage. 

A common misconception is that many of these benefits are available within Wi-Fi 6, but whilst Wi-Fi 6 can offer high capacity, it can’t manage radio resources as efficiently as 5G and is intrinsically hampered by sharing unlicensed spectrum, whilst 5G using dedicated spectrum is inherently more reliable.

It would also be missing the point to say that 5G is simply a ‘faster 4G’ – 5G adopts a service-based architecture (SBA) which enables provisioning of customised network slices and zero-touch network operations that provides much finer granularity in how a 5G network can be set up and run.

5G is therefore growing in favour, 75% of manufacturers indicating that 5G is a key enabler within their digital transformation strategies [Capgemini’s global enterprise 5G survey].

Nevertheless, it’s not a clear homerun for 5G and to succeed it must provide the best of both worlds – the functionality, performance and reliability of 5G, twinned with the flexibility, control and ease of use of Wi-Fi deployments.

Delivering 5G to meet enterprise needs

Network slicing is a new capability introduced in 5G that enables mobile network operators (MNOs) to leverage their public 5G infrastructure to provide virtualised private networks to enterprises.

A number of slice types have been defined within the 3GPP standards (3GPP TS23.501):

In a manufacturing example, a computer vision system used for monitoring a production line may require consistent throughput with an ultra-reliable connection and be best served by a URLLC slice, whilst sensors for monitoring humidity levels may only need to connect intermittently to send signals to a control centre and be adequately served using an mMTC slice.

But this approach may be too constraining for some enterprises – the slices being statically defined, whereas what many enterprises really want is the ability to control their connectivity on a more dynamic basis to map resources to an application as circumstances change (adaptive slicing).

As 5G public networks evolve towards fully cloud-native architectures, it will become possible to provision highly customised network slices tailored to specific services. But for now, MNO public 5G offerings are limited by the current approach of predefined eMBB, URLLC, and mMTC slices.

Given these constraints, enterprises are increasingly exploring the option of procuring their own 5G mobile private network (MPN) that can be tailored specifically to their needs.

A 5G MPN is a 5G network (RAN and 5G core) that has been designed, configured and deployed specifically for a given enterprise customer.

Mobile networks are designed to utilise specific licensed spectrum, so the logical choice would be to procure an MPN from an MNO. But with the introduction of shared spectrum in many countries (including the UK) and open flexible architectures (via OpenRAN) there are now many new entrants entering the space offering solutions to enterprises either direct or through partnership.

This gives enterprises the flexibility to decide whether to go with a Managed Service Provider (MSP) that can fully design, deploy, configure and optionally operate the MPN for them (e.g., a school campus), or work with a selection of vendors and partners to assemble their own MPN infrastructure tailored to their requirements (e.g., smart manufacturing, ports, mining etc.).

Currently, all options and potential partnerships are being explored in the marketplace.

MNOs and incumbents such as Ericsson and Nokia are partnering to bring MPN propositions to their enterprise client base (e.g., Ericsson Industry Connect).  But equally MNOs are also partnering up with challengers (Affirmed Networks, Parallel Wireless, Metaswitch, Mavenir, Celona et al) and leveraging cloud resources (e.g., Azure, AWS Wavelength) and enterprise IT partners (Cisco, IBM, Oracle) to increase their flexibility and agility in bringing solutions to market that encompass not only connectivity but also provide the cloud, edge and AI capabilities needed by enterprises for their end-end application delivery.

Whilst the necessity of acquiring licensed spectrum for 5G MPN deployments drives many of these players into partnering with the MNOs, in those markets where shared spectrum has been allocated, these players are also able to step up, adopt the role of a Managed Service Provider, and offer complete MPN solutions directly to enterprise clients. Nokia, Ericsson, Mavenir, Celona, Federated Wireless, Expeto and many more all have direct-to-market propositions, and the hyperscalers are also eying up the opportunity with both Amazon and more recently Google announcing MPN offerings, either developed in-house or through partnership (Google working with Betacom, Boingo, Celona and Kajeet in the US).

Enterprises are faced with many options, but this also gives them huge flexibility in finding the best match for their functional and operational needs and also affords them with higher levels of privacy by operating the infrastructure themselves rather than sharing infrastructure within a public network – for those in manufacturing, high security is a key driver in choosing an MPN over utilising a public 5G network slice.

Given the opportunity, it’s hardly surprising that deploying private 5G is a top priority now for IT decision makers in enterprises [Technalysis Research] and 76% of those in manufacturing plan to deploy 5G MPNs by 2024 [Accedian].

Optimising connectivity to match use cases

A key attraction for enterprises in deploying their own 5G MPN is the flexibility it gives them in optimising connectivity to match application requirements. This can be achieved through the definition of an ‘intent’ that states expectations on service delivery and network operation through the expression of a set of goals, functional requirements, and constraints.

The table below describes the requirements for example use cases within a factory automation context:

At a practical level, intents can be managed in a number of ways depending on the skillsets of the enterprise. For those enterprises with limited expertise, a set of low/no-code tools can be provided for defining intents, app/device group administration, and monitoring network and application performance as well as end-end security.

Conversely, for those wanting more fine-grained control, orchestration could be provided to DevOps teams through RESTful APIs with dynamic control over throughput, latency, packet error rate metrics, network segments / IP domains etc., and/or bootstrapped via Infrastructure as Code (IaC) templates – in short, the aim is to enable enterprises to configure and manage their 5G MPNs using DevOps-friendly interfaces as easily as Kubernetes enables them to do with cloud resources for their application and services.

Introducing Zeetta

Zeetta delivers on this vision by hiding the details of vendors and technology domains under a layer of abstraction and then enabling the enterprise application developers to consume these services in an end-to-end low/no-code fashion. This application-centric, end-to-end view also enables DevOps teams to independently innovate and operate applications without the need for centralized large networking groups.

The platform has been developed and trialled within the £9m 5G-ENCODE project, and provides enterprises with a ‘single pane of glass’ to visualise their end-to-end network as well as a set of automation features for optimal network management:




Zeetta translates the demand and intent into a set of parameters and complex actions for each domain, and leverages the open interfaces provided by the MNOs/MSPs supplying the MPN to create the connectivity slice and avoid over-dimensioning of the RAN, Core and BSS/OSS hence reducing cost (CAPEX and OPEX). This slice is then continuously monitored, compared and adapted based on the quality of experience (QoE) targets. 

Zeetta product architecture

In summary

5G offers high capacity, low latency, and full flexibility, coupled with reliability through dedicated spectrum.  Whilst public 5G network slices will evolve over time, the current lack of in-building coverage and fine-grained control means that for many enterprises the best solution is to procure their own 5G MPN.

Many pilots [Vodafone & Ford] have already demonstrated the significant benefits of 5G MPNs and a number of initial deployments are already operational [Verizon & UK ports].  5G MPN rollout is likely to reach around 25k installations by 2026 and accelerate rapidly to ~120k by 2030 [Analysis Mason; IDC; Polaris Market Research; ABI research].

Whilst many have leant heavily on MNOs to help design, deploy and configure their MPNs, such an approach will be difficult to scale, and the growth projections are unlikely to be realised unless 5G MPNs can be as simple to deploy and manage as experienced with cloud resources today.

If achieved, this will open up 5G MPNs to enterprises of all sizes – in essence, similar to the democratisation of telco APIs brought about by the introduction of developer-friendly platforms (and RESTful APIs) from the likes of Twilio a decade or so ago.

Twilio growth in the past decade [source: Twilio]

The cloud emerged in a similar timeframe, but since those early launches of elastic processing and storage, a multibillion-dollar industry has grown up around them supplying tools and supplementary services to make the consumption of these resources simpler. To enable enterprise 5G MPNs to be built on-demand as simply as is now enjoyed with cloud resources will require a similar ecosystem of tools and services to emerge.

Zeetta is leading the vanguard in this regard by providing a sophisticated orchestration tool that acts essentially as a ‘Kubernetes for MPNs’, but extends across multiple technology domains (4G, 5G, Wi-Fi, SD-WAN, MEC, public 5G slices etc.) to provide comprehensive management, and all exposed via an intuitive ‘single pane of glass’ and DevOps-friendly interface.

Demand for high performance compute (HPC) on the rise

Once the stalwart of particle physicists, Formula 1 designers, and climate forecasters, the demand for HPC is rapidly going mainstream as corporates increasingly introduce deep learning models, simulations and complex business decisioning into their daily operations.

HPC can play a pivotal role in accelerating product design, tackling complex problems and enabling businesses to generate insights faster and with more depth and accuracy, and has applicability across an ever-widening range of industries including financial services, media, gaming and retail.

To-date, the only option for corporates seeking to access this level of compute was to build, maintain and operate dedicated HPC facilities in-house, but this brings a number of challenges. The first is cost – HPC systems are expensive, and only around 7% of the budget actually goes toward the hardware, the rest being consumed by buildings, staffing, power, cooling, networking etc. Moreover, because many of these systems are designed to support peak demand, utilisation can be as little as 60% for the majority of the time.

What’s more, significant additional capital is needed on a three year upgrade cycle to keep pace with demand as the business grows and the volume and complexity of workloads increases, and/or to reap the benefits of the latest computing technology.  But this computing resource is intrinsically finite and hence projects within an organisation need to be prioritised leading to many missing out or having to step aside if more urgent tasks come along.

HPC on-premise deployments are traditionally designed and optimised around particular use cases (such as climate forecasting) whereas corporates today need HPC resources that can support a much broader set of applications and be able to adapt as workload characteristics evolve in reaction to the fast-moving competitive landscape.

Many companies are therefore turning to cloud-based HPC.

 [Image Source:]

Benefits of cloud HPC

First and foremost, cloud HPC provides more flexibility for an organisation to gain access to HPC resources as and when needed and scale to match individual workload demands.

It also opens up more choices for the corporate; for instance, employing 10x HPC resources to accelerate product design and gain competitive advantage by being first to market. Or increasing productivity by removing compute barriers so that the corporate can use more detailed simulations or eliminate the effort in simplifying deep learning models to fit inside legacy hardware.

A cloud-based approach mitigates the risk in cost & complexity of operating HPC on-prem by providing flexibility to manage the cost/performance trade-off, allowing HPC environments to be created on the fly and then torn down as soon as the workloads have completed to avoid the corporate paying for resources and software licenses that are no longer needed. 

To accommodate this variability in customer demand, CSPs dimension their cloud infrastructure with excess capacity which is powered-up and ready to use but otherwise sitting idle. To offset the monetary and environmental impact of this idle infrastructure, CSPs offer this excess capacity in the form of preemptible instances at massive discounts (up to 90% in some cases) but with the caveat that the resource can be reclaimed by the CSP at a moment’s notice if required by a full-paying customer – a corporate choosing to use these preemptible instances is essentially trading availability guarantees for a variable but much reduced ‘Spot’ price.

HPC workloads such as running a simulation, training a deep learning model, analysing a big data set or encoding video are periodic and batch in nature and not dependent on continuous availability hence a good fit for preemptible resources. If some of the resource instances within the HPC cluster are reclaimed during processing, the workload slows but does not completely stop. Ideally though, it should be possible to quickly and seamlessly re-distribute the part of the workload that was interrupted to alternate resources at the same or a different CSP thereby ensuring that the workload still completes on time – this is possible but not easy, and an area of speciality for some 3rd party tool providers.

With the increase in availability of HPC resources twinned with the ability to closely manage cost, corporates get the opportunity to open up HPC resources to the wider organisation, enabling a wider range of teams, departments and geographically dispersed business units to access the processing power they need whilst being able to track cost and performance and focus on outcomes rather than managing operational complexity.

In a world that is speeding up, becoming more competitive, and being driven by continuous integration and continuous delivery (CI/CD), easy access to cost-effective HPC resources on-the-fly is likely to become a key requirement for any corporate wishing to stay ahead.

Considerations when leveraging cloud HPC

Running complex technical workloads in the cloud is not as simple as swiping a credit card and getting a cloud account.

Many of the companies coming to cloud HPC will be specialists in their area, and may also have cloud expertise, but will need support in composing their workloads to take advantage of the parallelism within the cloud HPC stack, and tools to help them optimise their use of cloud resources.

Such tools will need to work across both workload management and resource provisioning, balancing them to meet the corporate’s target SLAs whether that be dynamically adding more resource to complete a workload on time, or prioritising and scheduling workloads to make most effective use of resources to meet budgetary constraints.

More specifically, tools will be needed that can:

Conduct realtime analysis of workload snapshots to determine their compute requirements.

Sift through the bewildering array of 30,000 different compute resources offered by the CSPs to ensure the best fit for each individual workload whilst also abiding by any corporate policy or individual budgetary targets.  Factors that may need to be taken into account when selecting appropriate resources include:


[Image Source:]

Create clusters of mixed instance types, and do this x-CSP to avoid vendor lock-in and/or to circumvent constraints imposed by any single CSP when dealing with large clusters.

Ensure the workload data is available in the relevant cloud by replicating data between CSPs and locations to ensure availability should a workload need to be executed there.

Monitor when workloads start and complete to ensure that resources are not left running when no workloads are executing.

Intelligently monitor spot/preemptible instances (where used) to ensure that workload cost stays within budget as the spot pricing fluctuates with demand, and reallocate workloads seamlessly if instances are reclaimed by the CSP to ensure that the composite cluster is able to deliver against the workload targets.

Integrate into a corporate’s DevOps and CI/CD processes to enable accessibility of HPC resources more broadly across the organisation.

Provide a single view of workload status and enable users to dynamically make changes to their workloads to deliver results on time and within their project budgetary constraints.

Coordinate with any 3rd party schedulers already used by the corporate (e.g., Slurm, IBM LSF, TIBCO DataSynapse GridServer etc.) to provide a single meta system for workload submission and management across on-prem, fixed cloud and public cloud HPC resources.

Client types and associated requirements

The relative importance of these different tools and requirements will very much be determined by the type of company seeking to utilise cloud HPC, the level of resources they may already have in place and the type of workloads they need to support.

Three example client types are outlined:

HPC stalwarts

Multi-national organisations and specialist corporates in sectors such as academia, engineering, life sciences, oil & gas, aircraft and automotive that already have an HPC data centre on-prem but aim to supplement it with cloud HPC resources to avoid the cost of building out and maintaining additional HPC resources themselves to increase capacity.

Such clients may use cloud resources as an extension of their existing HPC for use with all workloads, or segment and only use cloud for adhoc non-critical (and loosely coupled workloads), or perhaps just for ‘bursting’ into the cloud to deal with peaks in demand either because the planned workload exceeded expectations and bursting was needed to complete it on time (e.g., CGI rendering), or bursting was employed to speed-up execution and produce simulation results more quickly. By using the cloud as an adjunct enables these companies to extend the usefulness of their existing on-prem systems, and any new systems they deploy can be designed with less peak performance capacity by being able to burst into the cloud whenever needed.

Given that the corporate will already have on-prem and/or private cloud infrastructure, cloud HPC tools will be needed that can interface with the existing 3rd party workload schedulers.  Equally, any cloud HPC resources that are employed may need to be matched to the on-prem resource types already in-use, hence intelligent tooling will be needed that can analyse individual workload requirements and provision the most appropriate cloud resources across the myriad of available instance options from the CSPs, and map the workload accordingly across the on-prem and cloud infrastructure.

Depending on the workload, the corporate may also decide to use spot/preemptible instances to complete batch processing tasks without loading other cloud resources and/or as a way of managing cost.

Cloud-native corporates

Corporates in sectors such as financial services, retail, media, gaming, manufacturing and logistics that are dependent on high-performance compute to drive their deep learning models, simulations and business decisioning to maintain a competitive edge but with insufficient funds and/or interest in deploying and managing dedicated HPC resources on-prem hence reliant on such resources being provided via the cloud.

Given the mission-critical nature of their workloads, such corporates are likely to follow a multi-cloud strategy to provide resiliency and de-risk dependency on a single provider. Selection of resources may also be driven by corporate sustainability goals, with a preference for CSPs and/or specific CSP data centres that maximise use of renewables.

[Image Source: Digital Goal]

Intelligent tooling will also be needed for use by the corporate in parallelising their workloads and integrating into their existing DevOps processes, and a dashboard providing oversight of HPC resources employed and workload status.


Similar to the cloud-native corporates, many startups/scale-ups utilising deep learning for NLP, computer vision etc. are keen on gaining access to HPC resources to accelerate their product development and time to market, and/or would like to develop products and services that can scale up and down in the cloud, but may not have the budget or expertise to achieve this.

Such companies are therefore wholly dependent on automated tools that enable them to programmatically control their usage via DevOps interfaces and dynamically switch between different CSPs and instances to minimise their costs. Primary usage will be via preemptible resources, and startups may also choose to use older generation instances to meet budgetary constraints.

Introducing YellowDog

YellowDog is a pioneer in the cloud HPC space, providing solutions that enable intelligent orchestration, scheduling and provisioning at scale across on-prem, hybrid and multi-cloud environments and delivering on all the requirements outlined above.

In addition to providing benefits to companies already employing HPC, they’re unique in being able to generate clusters delivering HPC levels of compute using spot/preemptible instances hence are well placed to support the new breed of companies needing access to HPC performance levels at an affordable price and to provide startups with a base platform that enables them to easily develop a new autoscaling product or service hence reducing their time to market and simplifying development.

A particular speciality of YellowDog is the ability to rapidly spin-up massive scale HPC clusters that aggregate resources from multiple CSPs and/or across multiple regions to circumvent the scaling limits in any particular CSP; in 2021, YellowDog successfully demonstrated creation of a cluster utilising 3.2million vCPUs on AWS to run an HPC workload with 95% utilisation, and achieved this feat in under an hour.

Figure 4 Scale-up to 3.2 million vCPUs and rapid scale-down on job completion (YellowDog; AWS)

The YellowDog platform provides a straightforward GUI enabling engineers and scientists to use the platform without needing to be HPC specialists, and also provides a sophisticated dashboard and API access for managing workloads and provisioning preferences, including an ML-based prediction of completion time thereby enabling customers to easily flex the resources being employed to meet a particular deadline or budgetary constraint.

Unique in the market, YellowDog also compiles a realtime insight on the myriad of different instances offered by the main CSPs[1] with regard to their machine performance, pricing, and use of renewables, and utilises this intelligence within the YellowDog platform to deliver optimal provisioning for its clients.

Whilst there are other companies offering solutions to help clients with their cloud orchestration and management, only YellowDog provide orchestration twinned with intelligent scheduling and provisioning at sufficient scale to deliver compute capabilities at HPC performance levels, and at a price point using spot/preemptible resources that meets the growing industry demand, and via a platform and set of tools that enable all to enjoy the benefits of cloud HPC.


The world is speeding up.

Easy access to HPC levels of compute via the cloud is changing the economics of product development, increasing the pace of innovation and enabling corporates to increase agility, accuracy, and critical insights in today’s data-driven economy. By harnessing preemptible instances and spot pricing, even the smallest of companies and startups can now afford to run HPC workloads.

Preemptible instances ensure that cloud resources do not lie idle, and bring environmental benefits as well as incremental revenues for the CSPs and lower costs for companies utilising the cloud – a veritable win:win for all, and demonstrates that HPC systems in the cloud can be cost-comparable to on-prem alternatives whilst bringing many advantages.

Harnessing the potential of cloud HPC whilst meeting all other business objectives though is no mean feat and will be dependent on intelligent tooling. YellowDog is a pioneer in this space and a perfect partner for any business looking to leverage cloud HPC resources to gain a competitive edge.

[1] Amazon Web Services (AWS), Google Cloud Platform, Microsoft Azure, Oracle Cloud Infrastructure and Alibaba

The science that connects our phones to cell towers remains one of the greatest technological achievements of the past century. Radio Access Networks (RAN) convert electromagnetic waves to data streams of electrons and back again at fibre-like speeds.

This is made possible through the deepest technology which takes theoretical physics out of the lab and turns it into a commercial reality. Driving the generations of technology that have become familiar household terms (the G’s) is a rich ecosystem of academia, vendors and network operators co-ordinated through standards bodies and initiatives such as ITU-R, 3GPP, GSA and GSMA.

Open RAN (ORAN) is one such initiative gaining market momentum with engagement across a range of players (mobile operators, network equipment providers, chip component suppliers, system integrators, and test specialists). ORAN has moved beyond the peak of the hype-cycle and will become a major force in RAN equipment provision. Some predict it will grow from less than a tenth of total RAN spend in 2021 to over a half by 2030.

The theory of ORAN, and the driving force behind the initiative, is supply chain disruption. For Mobile Network Operators (MNOs) it provides greater flexibility, increased innovation, a broader number of suppliers whilst reducing cost through competition. Ultimately ORAN promises to break decades of vendor lock-in.

Why now?

In some respects, there’s a sense of déjà vu with MNOs pushing a strategy of open interfaces between infrastructure elements to diversify supply chains.

In the early 2000s, at the peak of 3G hype, there was a broad set of infrastructure suppliers with Nokia, Ericsson, Nortel, Alcatel, Lucent, Motorola, Siemens, and Huawei all vying for business in 3G rollouts.

Even back then 3GPP standards specified intra-network element interfaces that enabled mobile networks to be built using multi-vendor products. Nokia and Ericsson developed complete end-to-end (E2E) solutions, whereas others like Motorola and Lucent concentrated on specific network elements.

But in practice, the single vendor E2E solution providers won out, the MNOs preferring a fully integrated solution as it simplified supply chains, reduced system integration overheads and streamlined Network Management. Consequently, only a small number of dominant suppliers have survived the industry consolidation that followed with the likes of Nortel, Siemens, Motorola, Alcatel and Lucent disappearing.

What’s different this time?

Valuable lessons have been learnt, this time around there is a focus on tackling proprietary product architectures and mitigating against over complicated vendor-specific Operations and Management (O&M) systems.

Source: O-RAN Alliance

The O-RAN Alliance founded in 2018 by AT&T, China Mobile, Deutsche Telekom, NTT Docomo and Orange is a global community of MNOs, vendors, and research institutions working together to ensure interoperability. The Alliance has published over 74 specifications that address gaps and ambiguities within the 3GPP specifications defining the necessary O&M processes and systems.

In addition to this, security concerns about critical infrastructure being sourced predominantly from Chinese companies such as Huawei and ZTE (with implied state control) has led to Governments forcibly opening up the telecoms market by banning Chinese manufacturers from providing critical elements of 5G infrastructure. In doing so, creating a technology vacuum stimulating innovation and creating opportunity for new entrant startups – all made possible by ORAN.

A number of startups have successfully entered the market providing RF front-end solutions; examples in Europe: AccelerComm, Lime Micro, Pharrowtech, Software Radio Systems, and outside Europe: DeepSig, EdgeQ, Metanoia Communications and Picocom.

Which companies are innovating in ORAN?

Southampton based AccelerComm is a good example of how startups can bring fresh innovation into the ORAN space – in their case, developing deep tech that delivers a 10x improvement in information throughput speeds and latency reduction.

The 5G ORAN architecture also introduces the RAN intelligent controller (RIC) which allows 3rd parties to generate xApps (near real-time) or rApps (non-real time) for optimising ORAN performance based on the environment. The higher-level Management & Orchestration functions of 5G also provides opportunities for new entrants such as: AccelleranIS-Wireless, Zeetta Networks in Europe, and from further afield Aarna NetworksCellwize, and Opanga.

Source: Zeetta Networks

Zeetta has developed multi-domain orchestration technology based on 5G network slicing principles, and innovative splicing technology to provide QoS management and improve resource utilisation across access networks and cell sites. A capability that is especially relevant to Industry 4.0 and is demonstrated via the DCMS-backed 5G-ENCODE project.

ORAN is driving demand for higher performance compute, especially to meet the higher levels of complexity in 5G compared with 4G. Massive MIMO, in particular, can prove challenging when significant antenna arrays are used in combination with high bandwidths – Xilinx estimates a x40-x300 uplift in compute for 100MHz 64T64R 5G compared with 20MHz 8T8R 4G [source: “Telecom TV – OpenRAN Summit – October 2021”]. 

In response, chip suppliers are working to enrich existing CPU products with hardware accelerators to meet the demands of high-performance ORAN software whilst seeking to optimise power efficiency to enable a wider range of deployment topologies. Enter ARM and watch this space Intel.

How big is the prize?

The ORAN market will take time to become an established alternative to existing single vendor solutions especially for the high demand of dense urban high-capacity deployments. Indications are that the ORAN marketplace will mature in 2024/2025, providing an opportunity for companies to establish themselves in the short term and be well placed to capitalise on the maturity and growth phase of ORAN. ABI Research predict ORAN revenue will grow to over a half of RAN revenue by 2030.

Having said that, many MNOs will have deployed their 5G RAN equipment by this time, and ORAN may end up being more significant during a 5G equipment refresh towards the end of the decade. This is being accelerated by state intervention:

These may lead to more ORAN investments over the next 2-3 years, especially for rural areas. In the meantime, the deployment of private cellular networks (PCNs) may drive the near-term commercial opportunity for ORAN. J’son and Partners Consulting estimate that annual spending on private 4G/5G reached $1Bn in 2020, with an estimated 10% YoY growth.

Whilst this represents a sizeable market for the ORAN ecosystem, it only equates to about 2% of the total expenditure in cellular infrastructure by the MNOs, small compared to the wide-area public network opportunities in today’s market. However, strong longer-term growth in enterprise and industrial PCNs is predicted by ABI Research with revenues growing to $65Bn by 2030.

The combination of ORAN technology readiness and political stimulus are clear indicators that there’s a real opportunity for startups. Provided that is, the MNOs don’t repeat history and opt for established vendor single supplier solutions as Vodafone UK has decided to do with its selection of Samsung as its single vRAN and ORAN solution provider. BT has announced a Nokia ORAN trial in Hull and notably has been quite public that no one should assume that a single vendor strategy is going to change anytime soon.

More positively Vodafone Group has recently announced its opening an R&D centre in Spain that will work with Intel and other silicon vendors to develop its own ORAN chip architecture with half the 5 year investment of €250m coming from EU funding. Whether or not this will allow new innovators into the inner circle remains to be seen.

How does this impact early-stage deep tech?

One of the biggest challenges for early-stage companies in telecommunications remains as much a balance sheet one as it is a technology one. How do you convince the supply chain manager of an MNO that a loss-making startup is a safe bet for its critical infrastructure?

The answer is two-fold: first deliver significant performance improvements that have economic impact. This will likely be in specialist areas that the generalist prime contractors are not agile enough, or don’t have the deep technical expertise, to address. 

Such technology is likely to be very deep in the technology stack in areas such as L1 channel coding/equalisation, power efficient accelerator hardware and RF semiconductors, and at the higher layers in orchestration/resource management and QoS management using AI and Machine Learning in the RIC (xApps and rApps).

Second is to partner with and sell to the OEMs rather than MNOs. OEMs are the most obvious partners as they are also potential investors in deep tech companies.

Has the ship sailed for early-stage investment in these areas?

It possibly has for Seed stage startups with a focus on 5G ORAN. But the next developments of 5G-advanced and 6G have already started, just as those have in the parallel universe of IEEE (Wi-Fi 6 and 7). So, an opportunity for early-stage investment does exist and lays in those deep dark pools of tech that will deliver on the vision to produce more efficient and cognitive networks.

Whether ORAN alone can break incumbent vendor lock-in remains to be seen.

Get in touch with Bloc

We’re always looking for entrepreneurs innovating across cloud, connectivity, data science and security. Get in touch with our investment team below.

Cybersecurity innovation critical in combatting the inexorable rise in cyber threats and ransomware attacks.

Bloc invests in technology areas that underpin the future growth and prosperity of the digital age. Cybersecurity, and in particular the challenges companies face as they move operations online and into the cloud, is a growing area of importance and innovation.

The landscape for security teams is rapidly changing. Digital transformation, accelerated by Covid and remote working, is driving a rapid uptake in cloud utilisation.

Hybrid multi-cloud & remote working practises are dramatically expanding the attack surface as workforces access company IT systems from unsecured devices (home PCs, tablets) and over unsecured WLANs (home, coffee shops) thereby tearing down the single security perimeter that security teams have previously come to rely upon.

Competitive pressures driven by DevOps & CI/CD working practises are leading to mistakes in cloud configuration and deployment of unauthorised shadow IT, both of which are creating additional vulnerabilities within company networks – Verizon estimates that 82% of enterprise breaches should have been stopped by existing security controls but weren’t, and 79% of observed exposures were in the cloud compared with 21% for on-premise assets.

Source: 2021 Cortex Xpanse Attack Surface Threat Report

Worst still, zero-day vulnerabilities introduced or exploited within the systems and software of companies’ suppliers is on the rise – a Trojan horse in effect that a business has very little control over, although startups such as Darkbeam are seeking to help companies manage the risk.

Cyber-attacks and the resultant data breaches are expensive, erode customer trust, damage brand reputation and can ultimately stop a company in its tracks.

And yet despite their efforts, many companies are being overwhelmed by the magnitude of threats they face, and are ill-equipped to differentiate between real threats and false alerts coming from their networks.

Survival will be dependent on the development of intelligent tools leveraging advanced AI/ML that can augment and support security teams in their ever-lasting battle with the cybercriminals.

Key areas for innovation identified by Bloc

We have identified a number of cybersecurity areas for innovation:


The market opportunity is clear

Cybersecurity software & tools in 2020 was worth $12 billion in the UK, $26.5 billion in Europe and $78 billion globally and is projected to grow to $118 billion globally by 2024. The cybersecurity market for hardware & software combined is expected to exceed $200 billion by 2024 and reach $372 billion globally by 2028.

Managing cloud vulnerabilities is a race between attacker and defender and therefore ripe for new entrants bringing fresh ideas and utilising the latest technology to deliver anomaly detection, behavioural profiling and automated tools for supporting security teams and those companies wanting to take their business operations into the cloud.

Get in touch with Bloc

We’re always looking for entrepreneurs innovating across cloud, connectivity, data science and security. Get in touch with our investment team below.